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INTRODUCTION

This paper considers the coherent processing of detection waveforms having the form
of frequency-hopped uniform pulse trains, It is shown that if the parameters of the pulse
train are properly chosen, the range and doppler responses will be unambiguous, and will be
consistent with the overall burst duration and bandwidth, respectively, It is further demon-
strated that very well-behaved range-doppler sidelobes will be obtained if the frequency
schedule or "firing order" is derived from a class of permutation matrices having special
properties,

It might be of some interest to note that the basic concept demonstrated here came
from an application area in which fully-coherent processing was found to be inappropriate.
In a discussion of this prior work with Dr, P,E, Green, Jr, of IBM, it was suggested that an
extension of scope to include the fully coherent signal processor might prove useful, This
paper is the direct result of Dr, Green's comments,
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A SPECIAL CLASS OF PERMUTATION MATRICES

In a study of long-range active sonar systems it was found that time-vzcying multi-
path "medium effects" could seriously limit the performance of high TW-product, fully
coherent systems [1] The mediam-spreading effects are not unlike those encountered by
Price and Green [2] in radio astroromy work. The medium spread factors encountered in the
sonar case suggected use of a hybrid coherent/noncoherent technique. Simple CW pulses are
transmitted in the available time~frequency space, The receiver employs a bank of filters
whose cutputs are individually detected. A delay-and-add matrix is then used for the gen-
eration of echo amplitude vs range outputs for a set of assumed target-doppler values, The
filter vank provides the coherent processing, while the detectors and the delay-and-add
matrix perform a non-coherent addition function in the hybrid receiver/processor.

The problem of choosing the frequency-hopping pattern for the burst is influenced by

several factors: Under peak-power limitations energy per pulse will be maximized if only
one pulse is transmitted at any one time. Energy per pulse is a key parameter of the detec-
tion process under noise-limited conditions, Under reverberation (clutter) - limited condi-
tions a self-jamming situation exists so that independent ''looks'" at the target are needed to
enhance detection performance. For example, a second pulse placed in a frequency channel
will be wasted since the doubling of the echo energy is negated by a doubling of the background
(reverberation) level, Hence only one pulse should appear in each frequency channel oi the
transmit burst if performance in reverberation {(clutter) is to be optin-‘zed,

Having established the one pulse per time period and one pulse per frequency channel
rule, there still remains the problem of the range-doppler ambiguity in selecting firing order,
The classic frequency staircase or quantized FM (QFM) pattern, for example, is a very pocr
choice from an ambiguity standpoint. In an NxN frequency-time array there are N! patterns

that satisfy the "one-and-one' condition; how does one select ''good' patterns ?

We invoke first the narrowband assumption which implies that Larget doppler will shift
all echoes by the same amount. [This is definitely not valid in most sorar applications, but
the patterns whnich result using the narrowband assumption perform surprisingly well under the
actual (broadband) operating conditions.] The ambiguity problem arises from the fact that
the receiver operates as a two-dimensional coincidence detector, For example, when N
pulses arrive having the frequency and time positions of the transmit puttern (zero-doppler
target), these N pulses are detected, delayed and combined to given an N-value response out

......................




KAl

e

G o 32

W LT

A

IR AR T SR AR R W W R Y

f

of the zero-doppler processor. Consider now that a second ({moving) target is also present,
A frequency-chifted echo pattern from this target will result, If this second frequency-
shifted pattern has K coincidences with the zero-doppler pattern tor some relative time shift,
the zero-doppler processor will give a K-value response to this echo, The value K may not
be made zero for all time and frequency shifte but can it be constrained to unit level?

The problem can now be very simply stated: Place N ones in an otherwise null N
by N matrix such that each row contains a single one as does each column, Make the pla =-
ment such that for all possible x-y shift combinations of the resulting (permutation) matrix
relative to itself, at most one pair of ones will coincide,

In spite of the geometric simplicity of the problem statement, early efforts toward
a solution either failed or gave very limited results. A few mathematicians were contacted
with absolutely no results, A computer program which did a random search for ideal
patterns failed miserably until the threshold was raised above the ideal level. The program
then gave some useful patterns which satisfied the engineering ne2ds of the moment, How-
ever, questions concerning the ideal patterns remained largely unanswered,

It was realized carly on that an alternate statement of the problem could be made:

. Order the complete set of integers from 1 to N such that the difference triangle formed from

the ordered sequence shall have no repeated terms in any row. That is, form the first row
vy taking differences between adjacent numbers, All differences in this row must be unique.
Form the second row by taking differences between next-adjacent terms, This row must
also be free of repeated values, and so forth, A simple example of this process is shown in
Table 1 jor N = 1J, In the table L represents the order of the difference,‘e m} the ordered
integer set.

TABLE 1
DIFFERENCE TRIANGLE FOR N = 10

\‘9

L N 2 4 8 5 10 9 7 3 6 1
1 2 4 -3 5 -1 -2 -4 3 -5
2 6 1 2 4 -3 -6 -1 -2

3 3 6 1 2 -7 -3 -6

4 8 5 -1 -2 -4 -8

5 7 3 -5 1 -9

6 5 -1 -2 -4

7 1 2 -7

8 4 -3

9 -1




Using the difference triangle method, ideal sequences were found for all N up to 12,
N = 18, however, always remained beyond my pencil-and-paper grasp. Realization that the
problem could be stated in terms of the ordered integer set convinced me that this was a
problem of antiquity. With this in mind, Professor Solomon W, Golomb was contacted, a
short summary of the problem and work to date was given, and references concerning
seqrences having the stated property were requested.

Golomb's prompt reply was notable for two main reasons: First, he stated that no
reference could be given as this was apparently a new problem. Secondly, he offered me a
series of conjectures that have proven quite accurate. Golomb believed that solutions existed
for all N, that the number of solutions would grow very rapidly with N, and that the density of
solutions would become very small as N became large, Notable progress has since been made
by Golomb, Taylor, Welch and Lempel, Some of their results may be found in a recent 3]
and a pending [4] publication,

All known systematic conatructions for these arrays involve the use of primitive
slements of finite fields, A very elegant and simple construction method is given in a
theorer: by L, R. Welch [4]:

"Let g be a primitive root modulo the prime p. Then the (p-1) x (p-1) permutation
matrix with a,; = 1iff j = g (modp), 1 <i<p-1, 1<j<p-lis a Costas array."

The difference triangle example of Table 1 mzade use of Welch's theorem for p = 11,
g = 2. Note that 2 raised to succeeding powers (modulo 11) will yield the ordered integer
set shown in the example, Armed with the new knowledge that the density of solutions is
small (relative to the number of possible permutation matrices, N!), the writer developed
computer programs which do an ordered, exhaustive searck for these arrays. These pro-
grams have produced solutions for N = 19 for which there are no known algebraic construc-
tions. Also the programs have shown that the number of solutions for N = 3, 4,----12 are:
4, 12, 40, 116, 200, 444, 760, 2160, 4368 and 7852 respectively,

Unfortunately the fastest algorithm available becomes useless for N values much above
20, At one time there was no known construction for N = 24, A computer search for this N
was started many months ago which has yet to finish, Several hundred VAX* 11/780 processor
hours are estimated to have been expended to date on a weekends-only, slow-queue, lowest-
priority basis. In the meantime an algebraic construction for N = 24 has been discovered
and the VAX* search has been abandoned.

*VAX is a trademark of the Digital Equipment Corporation,




In the sectioris which follow fwo arrays based on Welch's theorem will be used. A
'“Welch-10" based on p = 11, g = 2 has firing order:

2,4,8,5,10,9,7 3,6,1
and a ""Welch-30" based on p = 31, g = 3 has firing order:
3, 9, 27, 19, 26, 16, 17, 20, 29, 25

13, 8, 24, 10, 30, 28, 22, 4, 12, 5
15, 14, 11, 2, 6, 18, 23, 7, 21, 1

These arrays are used because they are very easy to calculate, There is no reason
to believe thLat other constructions due to Taylor, Lempel, Golomb, or the computer-derived
sequences generated by the writer's algorithms would produce significantly different results
for the applications which follow,
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ANALYSIS OF A SPECIAL CLASS OF BURST WAVEFORMS

It is useful to formalize the difference trviangle property associated with this special
class of permutation matrices, Let the sequence of ordered integers be represented by

{en} =000 04, €, 0,-=-0 0 o (1)
The Lth row of the difference triangle will contain terms:

Ak = Fer %% (2)

L =12 --, N-2; k=0,1, 2, ---, N-1-.1,
and for every L

A # A

Lt sforr;és (3)

L,

A fairly general treatment of pulse trains is given by Rihaczek [5] . We treat here a
special case in which N unit envelope CW pulses of duratior T appear contiguously to form a
burst of overall length NT. The frequency of each pulse will be given by

n T “4)

where the 6 o re taken from (1). (In the analysis which follows 6 o -1 is actually assumed
so that 0 <6 = < N-1. This unit shift from the Welch theorem results ie trivial but

convenient,) Note that the time-bandwidth product of the resulting waveform is approxi-
mately equal to Nz.

The pulse train u (t) will be given by (complex envelope representation)

Bt = p, (t-nT) (%)
n=0
! where +j21ffnt
3 p,(t) = e 0<t<T 6)
' p, ) =0 elsewhere




The delay-doppler ambiguity function is defined as

X9 =35 f o ue-1) e 4

™

Where E is the total energy of u (t). For the exumple at hand E = NT/2 so that

XY = ¥F f B p -1y e T 4o (8)

It is easily proven that

[x(rnw)|<1 =[x ©,0)] (9)
and
[x Cri=w | = |x (v (10)
and
o0 @« 2
j f lx(‘r, v)| drdv =1 (11)

g

For computational purposes advantage was taken of (10) so that only non-negative
values of 7 are required. The relationship

r = kT +6 (12)
0<6<T, k=0,1, 2--, N-1

was used in conjunction with (6) and (8) to obtain

N-1-k N-2-k
x (1, ¥) = Z A+ Z B (13)
r=0 r=0

where

_(T-96) sinnf (T - ) -
A = FT [ 7B (T -0) ] xexp{in [6 (AT+2rT+T+5) Zfr‘s]}

(14)

N AR PR LR G R LR LR R D Tk Tl e TSR N U

.............




where

B fr - fk+r +y (15)
- 0 _|sinTyd \ -
B = & [ = xexp {]jr ['y (2kT+2rT+2T+5) 2fr6 ] (16)
and
fat
Yy = fr-fk+r+1+v 17

The subscripted frequency values conform to (4).

The above approach provided a computational convenience for producing the quanti-
tative data shown in the figures which follow. A different development of (8) will now be
undertaken which better demonstrates physical principles, Define the cross-correlation
function

H2m e 4, (18)

=i

] b (7)p (0-T)e

®m (M V)
which with (6) yields

sinv@(T - j71) ¥ ) -
b (T, ¥) = .(___). i:"; (%‘ ‘:") X exp [jwa('r+ 7) jzﬂfmr] (19)

i1< T, zero elsewhere

=f -1 -V (20)




The autocorrelation function, ¢nn' is obtained from (20) seiting m =n to
obtain
- (T-1m) sinwv (T-~-|11) .
¢ (1Y) = Tor iy Xexe [dme (Ten)-jowt, 7] 1)
|T| < T ,zero elsewhere,
Using (5), (6) ana (8) nn
[ ]
N- N-1 .
1
X(T, ¥) = %5 L p,* (0-nT) x E P, (0~ T-mT) e Hi2mvo o (22)
n= m=0

Changing summation and integration orders and grouping summations into like and unlike
subscript categories, one abtains

N-1 N-1
X(r,v) = % 2: e+j21mv’!‘ ¢nn(T’ v+ Z ¢nm (r=(n-m) T, v )
n=0 m=
m#n
L (23)
Note especially that
¢ (r,¥) = ¢ (r,y) =0
nm nn 24)

for|t|>T

The magnitude of X (7, v) represents the magnitude of the coherent processor response
g to a pulse train arriving with delay T and freqiency or doppler shift v We would like a zero

24 )

response everywheve excep. for 7 =0, v=0. Equation (11) shows that this is nct possible, If
the main peak of ‘x ' is narrow in both 7 and v for good resolution properties, the volume of
‘ X |2 under the main peak will be small. The bulk of the volume in svch cases will thea fall

10
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in the "pedestal' or ""sidelobe" region of the ambiguity function. Waveform choice to minimize
the deleterious effects of the pedestal is an important facet of detection system design. The
criteria vary with the application at hand [2,6, 7] . In this work we shall try to keep the peak
sidelobe values confined.

It will now be shown that the central peak of (23) is associated with the ¢nm sum while
the sidelobe responses may be associated, in the main, with the ¢nm sum,

Consider first the r = 0 axis. Note from (24) that all ¢nm terms are zero here.

Then
N-1

x (0, = % E eV o  (0,0) (25)
n=0

Using (21) and the identity

N-1

jar _ _j(N-1)a/2 sin N a/2 .
E e =e sin 8/2 (26)
r=0

one obtains the exact result

_ _JNmT sin NnpT
X (00 v = e N7 /T (27

which shows that the doppler resolution of the N-pulse burst is identical to that of a CW
pulse of duration NT.

It is convenient to define a normalized frequency variable y, where

a

y = vT (28)

Since the frequency channel spacing is 1/T, y is in essence a measure of frequency in units
of channel spacing, Equation (27) may then be written as

B LT g LS LI SOR OO MCH.  BF e 11 ror dat RGN e e it A

nNy sinnN
X Oy = ™Y 2T (29)
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The first zero of y will occur at y =+ 1/N, The half-baseline width of the main lobe, 1/N,

may be considered a measure of system frequency resolution,

The behavior of x (7, v) of (23) along the range axis (v=0) is complirated by the

fact that the ¢nm (second) summation does contribute to this main axis response, even though

it is only the ¢nn (first) summation that is desired here, Let x' be that part of (23) which
excludes the second sum

N-1
vmo sS4 Yo wo (30)
n=0
Use of (21) yields
N-1 ot »
x' (r,0 = L£ri) E.e " (31)
n=0

I7] < T, zero elsewhere.

Now fn is given by (4) in terms of the ordered integer set {0 n} as per (1). Note however
that in (31) s sum over N terms is involved, the order in which the fn values appear is

immaterial. If we decrement each 6 n by 1 then the value n/T may be used for fn in (31).
This yields

N-1 T
_ '-j27n 5+
X' (7,0) =Q._TIIL). 2 e T (32)
n=0
Usge of the identity (26) gives
T
T - “ImN-D3  ginaNr/T
o (noy = Ggurd O gy @0

|7 |< T, zero elsewhere
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The autocorrelation terms of (23) produce a range axis magnitude response that has a
unit peak value at T = 0 and would also peak again at 7 = T were it not for the (T - | 7 |) factor.
For the larger N values the sin Nz/(N sin z) ratio behaves very much like the sin Nz/Nz form

of (27). It is convenient to define a normalized delay variable as

A1
- T (34)

Then (33) becomes

T .

q
W

-j7(N~1) X sinmNx
X' x,00 =1-1x}) e IT(N-1) N sinnx (35)

A ¥
(P AWE v

|xl <1, zero elsewhere

Forixi> 1 (Jr1> T) like-frequency pulses nc longer overlap in the convolution integral of
(7) and x' has zero value here. The r-axis response beyond |7| = T is entirely due to
cross-product terms ¢nm of (23), and in a sense these line regions become part of the
pedestal or sidelobe regions.

An examination now begins of the ¢nm crossproduct terms of (23) which are respon-
sible for the pedestal of the ambiguity surface. Equations (19) and (20) show that the ¢nm

terms will peak to unit value when

T = -rp = (n-m) T
and (36)

v=p =f -f
o] n m

Because of central-point symmetry of the y function only positive delay values need be con-
sidered. The range of (n-m) of (36) will be 1 to N-1, So that

LIRS

. = LT, L=1, 2,---(N-1) (37)

For any fixed Lvalue,n exceeds m by this amount. Then from (36)

% =g o f = omtL m _ ZLm (38)
&) p m+l,. m T T T

Al :

?3"

where 0, A are defined in (1) and (2).
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It has been shown previously in (3) that the AL, m set contains no repeated terms for
a fixed L. Thus at the fixed delay x = L, each sidelobe term peaking on this line will do so
at its own unique frequency as given by (38). Since this logic holds for any and all delay
values L, it may be seen that all ¢nm peaks involve only one term of the second sum of (23).
The ¢nm peaks will be spaced by integral values in both x and y.

+
%

While these peaks do not coalesce, their density of distribution is not uniform. There
are exactly N-L peaks at delay T =+ LT, At unit delay there are N-1 peaks and at delay 7 =
(N-1) T there is but one peak. An equivalent argument may be made by reversing delay and
frequency roles, At frequency v=31 L/T there are exactly N-L peaks over the complete r
span for this frequency. Thus the area near the origin tends to be rather busy so that the
technique is almost a counter exaaple of Green's Theorem[6,7], as indicated in the next
paragraph. (Green conjectured on the maximum amount of area near the main lobe that
could be kept completely free of sidelobe volume, )

PRI
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Each ¢nm peak has a region of influence which is constrained absoiutely to a span 2T

units wide in the delay direction. This t cutoff results from the limited pulse duration T.
The region of influence in the frequency direction of each ¢ hm is not similarly constrained.
The behavior of each sidelobe peak is essentially that of ¢nm of (21) with 7, vmeasured

" from peak center, The behavior in frequency is of the sin z/z form. Thus each peak has a
"channel" of influence of width 2T in delay, This influence decays to zero at the channel
delay boundaries and drops off as sin z/z in the frequency direction. These channels of in-
fluence explain why the v axis (r = 0) is completely clear of pedestal (cross product) effects

i
»,

L AR GG G O

and why the 7 axis (v=0) is never free from these terms.

M
4

4
S

e

The overlapping of the ¢nm sidelobe terms produces reinforcement and cancellation
effects which are quite complex because of the amplitude and phase relationships involved.
However certain locations in the pedestal region will have predictable values. Along any
delay ridge line 7 = T, 88 per (36) the delay argument of ¢nm of (23) will be zero. We may
now use (19) to obtain

'

Kigs ) o

.

simr(fn-fm - ) T

»%! ¢nm( ty) "(fn _fm_v‘)T ( )
' now let
=+ L
vr = % T (40)

14




. S tass

where r is any integer. The angie 8 of the sin 8 /8 function of (39) becomes [see also (4)],

6 ]
8 =n[—,rl‘---—,li£-+-‘,r:]'r=w(on-om+r) (41)
Clearly (39) will then be zero for all 8 # 0 and will be unity only for 8 =0, So with the nor-
malization implied by (23) it may be stated that in the sidelobe region, for all integer co-

ordinate pairs of the normalized delay (x) and frequency (y), the | X |function will either be
zero or 1/N,

There i3 an orthogonality effect at work here between ¢nm terms belonging to a delay
channel. Each ¢nm center occurs at the zeros of all other ¢nm tails in that channel, Thus
the sidelobe values are constrained at a set of points to be either 1/N or zero in value. Even
though the sidelobe values are "anchored" at N (N-1) points, the actual peak values in the
pedestal exceed 1/N, The area under these peaks appears to be quite smail. This situation
will be demonstrated in the presentation of numerical data which follows,
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NUMERICAL RESULTS

The building block of the burst waveforms considered here is the simple CW pulse,
The ambiguity surface for a CW pulse may be obtained by setting N = 1 in {23) and using
(21) to obtain

a- |x|) sinmy (1-1x1) (42)

|x(X.y)| = Ty (L-1x1)

where x is normalized delay ( 7/T) and y is normalized frequency (vT). At zero doppler

(y = 0) a cut along the delay axis would show a triangle of unit height at x = 0 and two-unit
base extending from x = -1 to x = +1, At zero delay (x=0) a | sinmy/my | behavior would
result, A "3-D" view of this surface is shown in Figure 1, The "viewer" is positiored out
on the +x axis and is looking toward the origin, Successive frequency "cuts" at different
delay values are calculated and plotted with successive y-offsets. The plotter pen is lifted
when a previous cut surface obscures view, thus creating a "'3-D" effect. (The writer is
indebted to Dr. L. W, Bauer for this very useful software.) The vertical scale on the right
pertains to the first cut (which is everywhere zero in this case). The vertical scale for the
last cut starts at the tic mark above the word"DELAY" on the left vertical axis and extends
to the top line of the chart box, These plots are useful in presenting an overall picture of the
detection process, For precise quantitative work | X | versus x or y plots will be employed.

Figure 2 shows a portion of the ambiguity surface for a 10-pulse QFM burst in which
each successive pulse has a 1/T Hz frequency offset from the previous pulse, The classic
FM-ridge is clearly in evidence and contains most of the volume under the surface, Note
that the range and doppler resolution of the ridge changes with delay. At large delays only
a few pulses are effectively combined so that the resulting time-bandwidth product of the
process is low, More pulses become involved as x approaches zevo and the ridge shows 2
corresponding narrowing in x and y. Figure 3 presents a somewhat different perspective of

the same surface.

Figure 4 shows the ambiguity surface for a 10-pulse code derived from Welch's
theorem using p = 11 and g = 2, Since the volume under the lX i surface must equal unity,
a change from QFM to the Welch pattern spreads the FM ridge volume out over the pedestal
region. The difference triangle of Table 1 predicts a sidelobe at delay x = 9 and frequency
y = -1, This peak may be clearly seer. near the front of Figure 4. At delay 8 peaks at
y = -3 and +4 are predicted and are clearly visible, At delay 7 peaks aty =-7, 1 and 2 are

17
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indicated by Table 1, The peak at -7 may be seen in Figure 4 but the peaks at 1 and 2
coalesce and are not obvious, As the delay gets smaller more peaks exist per delay-axis
cut and overlap effects mask the basic form of the individual peaks.

Figure 5 shows the same data as Figure 4 without the successive y-axis offsets used to
emphasize the "3-D" effect. As aresult all constant-delay frequency plots are referenced to
the baseplane and pedestal peaking effects are accurately displayed. The tendency for side-
lobe spiking above the 1/N level due to ¢nm term overlaps near the origin is evident in this
figure.

The doppler axis response for x =0 is shown in Figure 6. As was predicted from (29)
and associated discussion a sin z/z be..avior is seen here with the zero of the mainlobe
sccurring at y = 0,1 = 1/N. Note that this behavior continues without end in the y dimension,

Figure 7 shows the delay axis response for y =0, From x =0 to x =1 the sin Nz/
(N sin z) functional as described in the discussion of (35) is operative along with spillover
from the pedestal ¢nm terms., Beyond x =1 the ¢nn terms vanish and only the ¢nm pedestal
terms of (23) are operative, Since no ¢nm peaks occur on the x axis, the response will be
_ zero on this axis for all integral values of x as was discussed following (41), Figure 7

corroborates thisAconclusion.

The worst sidelobe peak was measured as 0, 21 which 2,1 times the (normalized) ¢nm
term peak value, The general neighborhood of this peak is shown in Figure 8, It appears
that random phasing of the ¢nm sidelobes can produce isolated peaks of the order of 6-dB
over the 1/N value,

The Welch-30 code for p =31, g = 3 is considered next. It was shown earlier that if
x, y are restricted to integer values, the pedestal region will be either zero or 1/N depend-
ing on the nonexistence or existence of a ¢nm peak at the x, y coordinate, Figure 9 shows a
3-D plot restricted to integer x and y values, The sidelobe peaks as well as the main peak
for this code are clearly displayed by this plotting artifice. Triangles indicate isolated peaks

LR SRS R G i b G T e ey T

while the flat-topped sections indicate two or more frequency-adjacent peaks. The increas-
ing denaity of peaks with reduction of delay is quite evident from this figure.
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Figure 10 is a zero-offset 3-D plot of the Welch~-30 ambiguity surface which shows
peaks in true perspective, Pedestal spiking above 1/N near the origin is evident, Com-
parison with Figure 5 would indicate that pedestal peak levels do vary inversely with N with
2/N representing a fair estimate of the largest pedestal peak, There does not appear to be
any theoretical bar to the use of arbitrarily large N values.

Figure 11 shows the doppler axis cut for the 30-pulse code, As expecied a sin z/z
frequency behavior 18 e¢videnced with the first zero at y = 1/30. Figure 12 shows the delay
axis cut out to x =1, The first zero here is at x = 1/30 as expected. The complete positive
delay region for y = 0 is shown in Figure 13. The main peak is obscured by the choice of
the x-axis scale, The sidelobes are very well behaved, with relatively few sharp excursions
above the 1/N value,

Figure 14 is a frequency cut taken at a delay of x = 25, The 25th row of the difference
triangle for this Welch-30 sequence predicts sidelobe peaks at y = -25, -20, 2, 14 and 15,
These locations are clearly confirmed by Figure 14, Note that the isolated ¢nm terms have
exactly the peak value 1/N while the two peaks at y = 14, 15 create mutual interference
effects which result in a small spike which exceeds the 1/N value,

Figure 15 shows a frequency cut taken closer to the main peak, at x = 5. The mutual
interference effects from groups of frequency-adjacent ¢nm peaks are clearly evident near
the center of this plot, The highest peak found for this waveform was at delay x = 1.4 and
had a value of 0,078, Figure 16 shows a frequency cut at this delay with the peak in question
showing near y = 3.

The ambiguity surface taken for a region near this peak is shown in Figure 17. At the
front of this plot is a frequency cut taken at delay x = 3. Note that there are ¢nm peaks at
y=4, 6, and 7 and no ¢nm peak at y =5, In spite of the gap at y = 5 the mainlobe regions of
the peaks at 4 and 6 are highly distorted indicating significant overlap effects from the many
(27) ¢nm peaks which fall at this delay. The rapid undulations of this surface are to be com-
pared with equivalent data taken for the Welch-10 burst in Figure 8. Note aiso the lower
level of the Figure 17 data as compared to Figure 8. Increasing the pulse count from 10 to
30 hus increased range and doppler resolution by 3 to 1 and has lowered the sidelobe height
by about the same ratio.
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SUMMARY AND CONCLUSIONS

When the frequency-time pattern of a pulse train corresponds to one of the patterns of
the special permutation matrices described, the basic pedestal components are denied loca-
tion coincidences throughout the sidelobe region, thereby minimizing the peak noncentral
response, Specification of the frequency chunrel spacing to be equal to the reciprocal of the
pulse length prevents ambiguities along the delay axis so that the resulting central peak pro-
vides good resolution in both delay and frequency.

The peak pedestal level varies from 1/N away from the origin to 2/N near the central
peak, This method of waveform design can be extended to arbitarily large time~bandwidth
(Nz) products,

Further refinement of this basic technique might involve weighting over the pulse train
for both transmit and receive. Modification of the individual pulse envelope and phase charac-
teristics could also be considered for creation of more suitable ambiguity surfaces. None of
these variations were addressed here. Such extensions of the technique for sidelobe modi-
fication must be done carefully so that the integrity of the main response is maintained,.
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